
Supporting material for

“MCMC sampling of Markov models

for ion channels”

Ivo Siekmann
Auckland Bioengineering Institute,

The University of Auckland, Auckland, New Zealand

Larry E. Wagner II, David Yule
Department of Pharmacology and Physiology,

University of Rochester Medical Center, Rochester, New York 14642, USA

Colin Fox
Department of Physics,

University of Otago, Dunedin, New Zealand

David Bryant
Department of Mathematics and Statistics,
University of Otago, Dunedin, New Zealand

Edmund J. Crampin1

Auckland Bioengineering Institute and Department of Engineering Science,
The University of Auckland, Auckland, New Zealand

James Sneyd
Department of Mathematics,

The University of Auckland, Auckland, New Zealand

1Corresponding author. Address: Auckland Bioengineering Institute, The Uni-
versity of Auckland, 70 Symonds St, Auckland, New Zealand, Tel.: (+64) 9 373
7599 ext. 88168, Fax: (+64)9 367 7157



1 The forward-backward algorithm for sampling
sequences of states

In the following we describe a method for calculating sequences of Markov
states which are consistent with both the data I and the model Q. This
algorithm was previously used by Rosales et al. (1), Rosales (2), Rosales
et al. (3), Rosales and Varanda (4) and was first introduced by Carter and
Kohn (5).

Figure S1 shows how a sequence of current samples I is transformed
to open and closed events E. Open and closed events (denoted O and C,
respectively) are represented in the Markov model by open and closed states.
If a state Si represents an open event, we also write Oi as a shorthand
and, analogously, Cj if Sj stands for a closed state. The forward-backward
algorithm as it is described here assigns a sequence of Markov states M
to a given sequence of events E in a suitable way. Following the approach
of Rosales et al. (1) and Rosales (2) it is straight-forward to include more
advanced methods for idealising the currents I instead of using the sequence
of events E which was obtained by simple thresholding. Instead of idealising
the currents I, a filter can be included in Eq. 10 of the main text. Such a
filter is capable of taking into account characteristics of the noise both from
the recording apparatus as from the channel itself. See Rosales et al. (1)
and Rosales (2) for further details.

The idea of the algorithm is simple: In the forward phase, probability
distributions are calculated that at a position k in the sequence E the model
is in a state Mk ∈ S. These probability distributions P(Mk|(E1, ..., Ek), Q)
can be computed iteratively starting from the first event E1, which is why
this is named the forward phase of the algorithm. In the second phase,
starting from P(MN |(E1, ..., EN ), Q), a state Mk is then sampled for each
position k in the sequence, hence moving backwards from the last to the first
element of M . Both parts of the algorithm lean on the fact that transitions
from a state Mk = Sm to Mk+1 = Sn can be looked up in the transition
matrix Aτ = exp(Qτ) from the Markov model.

1.1 forward: Probabilities for the end of a sequence

In the forward phase of the algorithm probabilities for assigning a state Mk

to an event Ek are calculated. An example for a model with three closed
states C1, C2 and C3 and two open states O4 and O5 is given in Figure 1b of
the main text. Assuming that the Markov model is at equilibrium, the prob-
abilities P(M1|E1, Q) are obtained by scaling the stationary distribution π,
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Figure S1: Current samples which are shown in (a) are transformed to a
sequence of open and closed events E, see (b). Open and closed events
are represented by states of a Markov model which cannot be found di-
rectly from E. However, because transition probabilities between consec-
utive states Mk−1 and Mk are known from the model Q, a probability
distribution P(Mk = Sm|(E1, ..., Ek), Q) that the model is in a particular
state Sm can be calculated for each position k. The forward-backward algo-
rithm allows for generating realisations of the sequence (Mk).
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see Eq. 7 in the main text. For the example given in Figure S1c,

P(M1 = O4|E1, Q) =
π4

π4 + π5
. (S1)

In general,

P(M1 = Sn|E1, Q) =


πn∑

j:M1=Sj∈E1 πj
, M1 = Sn ∈ E1

0, M1 = Sn 6∈ E1
(S2)

Note that P(M1 = Sn|E1, Q) depends on the Markov model Q due to
the stationary probabilities πj .

Now that the initial probabilities P(M1 = Sm|E1, Q) are calculated,
transitions to a state M2 = Sn can be found by taking into account that the
transition probability P(M2 = Sn|M1 = Sm, E

2, Q) is given by the Markov
model, see Eq. 6 in the main text, bearing in mind that only transitions
to open or closed events are allowed depending on E2. For the example
(Figure S1c), we have

P(M2 = O5|M1 = O4, (E
1, E2), Q)

∝ P(M2 = O5|M1 = O4, E
2, Q)P(M1 = O4|E1, Q)

= ρ45P(M1 = O4|E1, Q). (S3)

For a general index k the probability P(Mk = Sn|Mk−1 = Sm, (E
1, ..., Ek), Q)

can be calculated analogously and Eq. S3 becomes

P(Mk = Sn|Mk−1 = Sm, (E
1, ..., Ek), Q)

∝ P(Mk = Sn|Mk−1 = Sm, E
k, Q)P(Mk−1 = Sm|(E1, ..., Ek−1), Q)

= ρmnP(Mk−1 = Sm|(E1, ..., Ek−1), Q). (S4)

where, similar to Eq. S2,

P(Mk = Sn|Mk−1 = Sm, E
k, Q) =

{
ρmn, Mk = Sn ∈ Ek
0, Mk = Sn 6∈ Ek

(S5)

There still remains one difficulty because P(Mk = Sn|Mk−1 = Sm, E
k, Q)

depends on the state Mk−1 = Sm from which the transition to Mk = Sn
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originated from. However, this can be resolved by summing over all possible
preceding states Mk−1 = Sm:

P(Mk = Sn|(E1, ..., Ek), Q) ∝
nS∑
m=1

P(Mk = Sn|Mk−1 = Sm, (E
1, ..., Ek), Q).

(S6)
Using Eq. S2, Eq. S4 and Eq. S6, the probabilities in Eq. S6 are calculated

iteratively for each k = 1, ..., N . Note that the P(Mk = Sn|(E1, ..., Ek), Q)
can be interpreted as the probability that the sequence (E1, ..., Ek) consist-
ing of arbitrary open and closed states ends in the state Sn. This imme-
diately leads to the idea of sampling a realisation of the state sequence M
starting from the final state MN which will be described in the next section.

1.2 backward : Sampling a sequence of states

Taking a look at the example again, from Figure S1b it can be seen that
the sequence E ends in one of the open states, i.e., O4 or O5. By drawing
a uniformly distributed random number it is decided which of the two is
chosen. Figure S1c shows that for our example it has been decided that the
sequence M ends in O4. Thus, with MN = O4, the probability distribution
for the preceding state MN−1 = Sm is given by

P(MN−1 = Sm|MN = O4, (E
1, ..., EN ), Q)

∝ ρm,4P(MN−1 = Sm|(E1, ..., EN−1), Q),

which generalises to

P(Mk = Sm|Mk+1 = Sn, (E
1, ..., Ek+1), Q) (S7)

∝ ρmnP(Mk = Sm|(E1, ..., Ek), Q)

for an arbitrary index k. Again, starting by samplingMN = Sn from P(MN =
Sn|(E1, ..., EN )) and generating samples for each k = N−1, ..., 1 using Eq. S7
gives an iterative algorithm.

Together, the forward and the backward phase allow for assigning a se-
quence of Markov states (Mk) to a sequence of events which is consistent
both with (Ek) as well as with the transition probabilities given by the
Markov model Q. In the Methods section of the main text, a method for
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drawing samples Q from the probability distribution P(Q|M,E) will be de-
veloped. Each time, a new sample Q is generated, the sequence (Mk) must
be updated.

2 Quantitative comparison of MH and MHG with
the Gibbs sampler by Rosales et al.

In Table 1, arithmetic mean estimates for AMH
τ and AMHG

τ are compared
with the estimates AGτ from Rosales’ Gibbs sampler (1) using the relative
error

ρij :=
âij − aij
aij

(S8)

where âij are the estimates for the components aij of the matrix Aτ given
by the arithmetic mean of the samples for the matrices AMH

τ or AMHG
τ , re-

spectively. Table 1 demonstrates that the new approach leads to clearly
better estimates. Especially the smaller entries seem to be generally overes-
timated by the Gibbs sampler.

3 Numerical methods and implementation
of MH and MHG

Here, we supplement the description of the MCMC algorithms MH and
MHG with some remarks on the implementation: Evaluating the likelihood
Eq. 10 in the main text requires the calculation of the matrix exponen-
tial Aτ . As explained by Moler and van Loan (6), approximation of the
matrix exponential is a difficult numerical problem. In our implementation
and whenever matrix exponentials are calculated in this article, we use our
own implementation of an algorithm described in (6, Method 3), a combi-
nation of scaling and squaring and a Padé approximation.

The MHG algorithm requires the sampling of the stationary distribu-
tion π from a Dirichlet distribution. As stated above, only half of the rate
constants are sampled by a Metropolis-Hastings step whereas the other half
is calculated from these rate constants and ratios of stationary probabilities,
an approach which is based upon Eq. 8 in the main text. If a stationary prob-
ability is very small this might lead to numerical difficulties when applying
Eq. 8 while a low stationary probability signifies that the corresponding state
occurs only infrequently. Therefore, new samples are drawn whenever one
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Aτ
0.997124 0.00245388 0.000109095 0.000311789 1.60819 · 10−6

0.0126925 0.71308 0.0709044 0.201711 0.00161154
0.00019916 0.0250251 0.971564 0.00319554 1.65222 · 10−5

0.000263299 0.0329325 0.00147821 0.950746 0.0145803
4.52693 · 10−7 8.77028 · 10−5 2.54764 · 10−6 0.00486009 0.995049

relative error of:
AGτ (percent)

+0.06 -70.83 +726.49 +72.81 +9668.35
-61.00 -0.88 -14.07 -5.56 +2186.92

+501.14 -36.60 +0.39 +109.49 +5294.20
+233.92 +5.05 +251.24 -0.19 -28.78

+7291.41 +1878.40 +7562.69 -54.84 +0.08

AMH
τ (percent)

+0.06 -21.14 -15.90 -20.65 -14.11
-14.27 -0.48 +6.32 +0.30 +8.59
-15.42 -1.89 +0.06 -1.29 +6.78
-15.68 -1.97 +4.55 -0.06 +8.10
-5.39 +10.04 +17.30 +12.08 -0.06

AMHG
τ (percent)

+0.06 -22.01 -17.36 -21.91 -15.96
-15.81 -0.30 +5.83 -0.06 +7.55
-17.77 -2.62 +0.08 -2.48 +4.92
-17.49 -2.20 +3.71 -0.04 +7.50
-7.68 +9.44 +16.01 +11.78 -0.06

Table 1: Fits of test data generated from the model shown in Figure 1b,
parameter values from Table 1b which both can be found in the main text.
Colours are used for indicating the magnitude of the relative error as follows:
Relative error is above 100 %: red, relative error is below 100 % but above
10 %: black, relative error below 10 %: green.

of the stationary probabilities has a value below a certain ε. This process is
repeated until a sample is found which contains only stationary probabilities
above ε. If this is unsuccessful after more than K iterations the algorithm
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is stopped. In our implementation we chose ε = 10−12 and K = 10, 000;
different choices of ε and K gave similar results. This behaviour will be
observed below if a model is fitted to test data which was generated from a
less complex model with fewer states. We will interpret this as a hint that
the model is overparametrised and a model with fewer states should be used
for fitting.

For smaller data sets (about 40,000 data points), the simple Metropolis-
Hastings algorithm as described by Eq. 17 and Eq. 18 in the main text is
sufficient. However, if the number of data points increases, the values of
the likelihood (Eq. 10 in the main text) become very small which results in
slow convergence and low acceptance ratio. This can be improved by using
adaptive MCMC methods—we successfully used our own implementation of
the t-walk by Christen and Fox (7).

The algorithms developed in this article were implemented in ANSI C for
the compiler gcc. For vector arithmetics and linear algebra the GNU Sci-
entific Library (GSL), version 1.14, was used (8). All figures were produced
with the plotting software gnuplot (9).
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